题目内容
已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=
,数列{bn}的前n项和为Tn,则T10=( )
| 1 |
| an-an+1 |
A、
| ||
B、
| ||
| C、1 | ||
D、
|
考点:数列递推式
专题:等差数列与等比数列
分析:由函数的解析式求得定点的坐标为(2,3),可得等差数列{an}的公差d=1,通项公式为an=n,求得数列{bn}的通项公式为bn=
-
,由此求得数列{bn}的前n项和.
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:函数y=loga(x-1)+3(a>0,a≠1)所过定点的坐标为(2,3),
由题意可得 a3=3,a2=2,故等差数列{an}的公差d=1,通项公式为an=n.
故bn=
=
=
-
.
故 T10=1-
+
-
+
-
+…+
-
=
.
故选B.
由题意可得 a3=3,a2=2,故等差数列{an}的公差d=1,通项公式为an=n.
故bn=
| 1 |
| an•an+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故 T10=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 10 |
| 1 |
| 11 |
| 10 |
| 11 |
故选B.
点评:本题主要考查对数函数的图象过定点问题,等差数列的通项公式,用裂项法求数列的前n项和,属于中档题.
练习册系列答案
相关题目
已知向量
=(2,1),
=(1,-2),
=(m,2);若(2
-3
)⊥
,则m=( )
| a |
| b |
| c |
| a |
| b |
| c |
| A、-4 | B、-16 | C、4 | D、16 |
已知向量
,
,
且满足
+
+
=
,|
|=3,|
|=4,|
|=5,设
与
的夹角为θ1,
与
的夹角为θ2,
与
的夹角为θ3,则它们的大小关系是( )
| a |
| b |
| c |
| a |
| b |
| c |
| 0 |
| a |
| b |
| c |
| a |
| b |
| b |
| c |
| a |
| c |
| A、θ1<θ2<θ3 |
| B、θ1<θ3<θ2 |
| C、θ2<θ3<θ1 |
| D、θ3<θ2<θ1 |
已知函数f(x)=m(x+m)(2x-m-6),g(x)=(
)x-2,命题p:?x∈R,f(x)<0或g(x)<0.命题q:若方程f(x)=0的两根为α,β,则α<1且β>1.如果命题p∧q为真命题,则实数m的取值范围是( )
| 1 |
| 2 |
| A、(-8,-2)∪(-1,0) |
| B、(-8,-2)∪(-1,1) |
| C、(-8,-4)∪(-2,0) |
| D、(-8,-4)∪(-1,0) |
函数f(x)=
的零点个数为( )
|
| A、0 | B、1 | C、2 | D、3 |
(理科)将A、B、C、D、E五种不同文件随机地放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,则文件A、B被放在相邻抽屉内且文件C、D被放在不相邻的抽屉内的放法种数为( )
| A、240 | B、480 |
| C、840 | D、960 |
平面向量
,
满足|
|=
|
|,且(
-
)⊥
,则
与
的夹角为( )
| a |
| b |
| b |
| 2 |
| a |
| b |
| a |
| a |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
| D、不确定 |