题目内容
17.分析 过B作BE⊥α于B,且BE=24,连接CE、DE,推导出△BDE是等边三角形,平面BDE⊥α,由此能求出线段BD与平面α所成的角.
解答
解:过B作BE⊥α于B,且BE=24(目的是把AC平移到BE),
连接CE、DE,
∵BD⊥AB、BE⊥AB,∴CE⊥平面BDE,∴∠CED=90°
在Rt△CDE中,CE=7,CD=25,∴ED=24,
△BDE中三边均为24,∴△BDE是等边三角形,∴∠EBD=60°,
∵BE⊥α,∴平面BDE⊥α,
∴线段BD与平面α所成的角为30°.
故答案为:30°.
点评 本题考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
5.下列说法正确的是( )
| A. | 给定命题p、q,若p∧q是真命题,则¬p是假命题 | |
| B. | 两个三角形全等是这两个三角形面积相等的必要条件 | |
| C. | 命题“?x∈R,x2+x+2013>0”的否定是“?x∈R,x2+x+2013<0” | |
| D. | 函数f(x)=$\frac{1}{x}$在其定义域上是减函数 |
2.集合$M=\left\{{1,-1}\right\},N=\left\{{x\left|{\frac{1}{2}}\right.<{2^{x+1}}<4,x∈Z}\right\}$,M∩N=( )
| A. | {-1,1} | B. | {-1} | C. | {0} | D. | {-1,0} |
6.已知一次函数f(x)=ax-1满足a∈[-1,2]且a≠0,那么对于a,使得f(x)≤0在x∈[0,1]上成立的概率为( )
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |