题目内容
1.已知过点P0(-1,2)的直线的参数方程为$\left\{\begin{array}{l}{x=-1+3t}\\{y=2-4t}\end{array}\right.$(t为参数),与(y-2)2-x2=1交于A、B两点,求弦|AB|的长.分析 求出直线的标准参数方程代入圆的普通方程,利用参数的几何意义和根与系数的关系求出|AB|.
解答 解:直线的标准参数方程为$\left\{\begin{array}{l}{x=-1-\frac{3}{5}t}\\{y=2+\frac{4}{5}t}\end{array}\right.$(t为参数).
代入(y-2)2-x2=1得:$\frac{7}{25}$t2-$\frac{6}{5}t$-2=0.
∴t1+t2=$\frac{30}{7}$,t1t2=-$\frac{50}{7}$.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{10\sqrt{11}}{7}$.
点评 本题考查了直线的参数方程,参数的几何意义,属于基础题.
练习册系列答案
相关题目
11.将向量$\overrightarrow{OA}=({1,1})$绕原点O逆时针方向旋转60°得到$\overrightarrow{OB}$,则$\overrightarrow{OB}$=( )
| A. | $({\frac{{1-\sqrt{3}}}{2},\frac{{1+\sqrt{3}}}{2}})$ | B. | $({\frac{{1+\sqrt{3}}}{2},\frac{{1-\sqrt{3}}}{2}})$ | C. | $({\frac{{-1-\sqrt{3}}}{2},\frac{{-1+\sqrt{3}}}{2}})$ | D. | $({\frac{{-1+\sqrt{3}}}{2},\frac{{-1-\sqrt{3}}}{2}})$ |
12.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则必有( )
| A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | $\overrightarrow{b}$=0 | C. | $\overrightarrow{a}•\overrightarrow{b}$=0 | D. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| |
9.已知$\overrightarrow{a}$,$\overrightarrow{b}$为同一平面内两个不共线的向量,且$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,6),若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{5}$,向量$\overrightarrow{c}$=2$\overrightarrow{a}$$+\overrightarrow{b}$,则$\overrightarrow{c}$=( )
| A. | (1,10)或(5,10) | B. | (-1,-2)或(3,-2) | C. | (5,10) | D. | (1,10) |
16.过直线x+y=2与x-y=0的交点,且法向量为$\overrightarrow{n}$=(2,-3)的直线方程是( )
| A. | -3x+2y+1=0 | B. | 3x-2y+1=0 | C. | -2x+3y+1=0 | D. | 2x-3y+1=0 |
13.长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为( )
| A. | $\frac{9}{32}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{64}$ | D. | $\frac{5}{64}$ |