题目内容
18.若a为正实数,2a2+3b2=1,则a$\sqrt{2+{b}^{2}}$的最大值为1.分析 变形利用二次函数的单调性、不等式的性质即可得出.
解答 解:∵a为正实数,2a2+3b2=1,∴b2=$\frac{1-2{a}^{2}}{3}$≥0,解得$0<{a}^{2}≤\frac{1}{2}$.
则$[a\sqrt{2+{b}^{2}}]^{2}$=a2(2+b2)=a2$(2+\frac{1-2{a}^{2}}{3})$=$\frac{1}{3}(-2{a}^{4}+7{a}^{2})$=-$\frac{2}{3}$$({a}^{2}-\frac{7}{4})^{2}$+$\frac{49}{24}$≤$-\frac{2}{3}(\frac{1}{2}-\frac{7}{4})^{2}+\frac{49}{24}$=1,
∴a$\sqrt{2+{b}^{2}}$的最大值为1.
故答案为:1.
点评 本题考查了基二次函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
8.已知两个不相等的非零向量$\overrightarrow{a},\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}},\overrightarrow{{x}_{2}},\overrightarrow{{x}_{3}},\overrightarrow{{x}_{4}},\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}},\overrightarrow{{y}_{2}},\overrightarrow{{y}_{3}},\overrightarrow{{y}_{4}},\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排成一列而成.记$\overrightarrow{{x}_{1}}•\overrightarrow{{y}_{1}}+\overrightarrow{{x}_{2}}•\overrightarrow{{y}_{2}}+\overrightarrow{{x}_{3}}•\overrightarrow{{y}_{3}}+\overrightarrow{{x}_{4}}•\overrightarrow{{y}_{4}}+\overrightarrow{{x}_{5}•\overrightarrow{{y}_{5}}}$,Smin表示S所有可能取值中的最小值,则下列正确的是( )
| A. | ${S_{min}}={a^2}+2ab+2{b^2}$ | B. | ${S_{min}}=2{a^2}+3{b^2}$ | ||
| C. | 若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{a}$|无关 | D. | S有5个不同的值 |
13.已知集合A={x|x≥0},B={-1,0,1},则A∩B=( )
| A. | {1} | B. | {0,1} | C. | {-1,0} | D. | ∅ |
3.已知a∈R,则a2>3a是a>3的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |