题目内容

9.已知△ABC中,内角A,B,C所对的对边分别为a,b,c,且a+b=$\sqrt{3}c$,2sin2C=3sinAsinB.
(1)求∠C;
(2)若S△ABC=$\sqrt{3}$,求c.

分析 (Ⅰ)由已知式子和正弦定理可得c2=$\frac{3}{2}$ab,结合a+b=$\sqrt{3}c$和余弦定理可得cosC,可得角C;
(Ⅱ) 由三角形的面积公式可得ab=4,整体代入余弦定理计算可得.

解答 解:(Ⅰ)∵△ABC中2sin2C=3sinAsinB,
∴sin2C=$\frac{3}{2}$sinAsinB,故c2=$\frac{3}{2}$ab,
又∵a+b=$\sqrt{3}c$,∴a2+b2+2ab=3c2
由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$
=$\frac{2{c}^{2}-2ab}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
∴C=$\frac{π}{3}$.
(Ⅱ)∵S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=$\sqrt{3}$,
∴ab=4,又c2=$\frac{3}{2}$ab=$\frac{3}{2}$×4=6,
∴c=$\sqrt{6}$.

点评 本题考查正余弦定理解三角形,涉及三角形的面积公式,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网