题目内容
计算:①1A11+2A22+3A33+…+nAnn;②| 1 |
| 2! |
| 2 |
| 3! |
| 3 |
| 4! |
| n-1 |
| n! |
分析:①本题考查的知识点是组合及组合数公式,要求1A11+2A22+3A33+…+nAnn的值,我们根据An+1n+1-Ann=nAnn对式子进行化简,不难求出1A11+2A22+3A33+…+nAnn的值.
解答:解:①1A11+2A22+3A33+…+nAnn
=(A22-A11)+(A33-A22)+…+(An+1n+1-Ann)
=An+1n+1-A11;
②∵An+1n+1-Ann=nAnn,
∴n=
=
,
=
=
-
,
∴
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
.
=(A22-A11)+(A33-A22)+…+(An+1n+1-Ann)
=An+1n+1-A11;
②∵An+1n+1-Ann=nAnn,
∴n=
| ||||
|
| (n+1)!-n! |
| n! |
| n-1 |
| n! |
| n!-(n-1)! |
| n!(n-1)! |
| 1 |
| (n-1)! |
| 1 |
| n! |
∴
| 1 |
| 2! |
| 2 |
| 3! |
| 3 |
| 4! |
| n-1 |
| n! |
| 1 |
| 2! |
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| 3! |
| 1 |
| 4! |
| 1 |
| (n-1)! |
| 1 |
| n! |
=1-
| 1 |
| n! |
点评:此题是个中档题.考查用排列组合数公式的性质An+1n+1-Ann=nAnn对式子进行化简是本题的关键,要求大家熟练掌握.
练习册系列答案
相关题目