题目内容
(1)计算:lg22+lg2lg5+lg5=
(2)化简
(a>0,b>0)的结果是
.
1
1
.(2)化简
| |||||||||
(a
|
| a |
| b |
| a |
| b |
分析:(1)直接利用对数的运算性质化简求值;
(2)化根式为分数指数幂,然后利用同底数幂的乘除运算化简.
(2)化根式为分数指数幂,然后利用同底数幂的乘除运算化简.
解答:解:(1)lg22+lg2lg5+lg5
=lg2(lg2+lg5)+lg5
=lg2+lg5=1;
(2)
=
=
=a
+
-
b1+
-
=
.
故答案为:(1)1;(2)
.
=lg2(lg2+lg5)+lg5
=lg2+lg5=1;
(2)
| |||||||||
(a
|
=
| ||||||
ab2a-
|
=
a
| ||||||
a
|
=a
| 3 |
| 2 |
| 1 |
| 6 |
| 2 |
| 3 |
| 1 |
| 3 |
| 7 |
| 3 |
=
| a |
| b |
故答案为:(1)1;(2)
| a |
| b |
点评:本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关题目