题目内容
(1)计算0.0081
+(4-
)2+(
)-
-16-0.75的值.
(2)计算lg25+lg2lg50+21+
log25的值.{提示lg25=(lg5)2,alogaN=N}.
| 1 |
| 4 |
| 3 |
| 4 |
| 8 |
| 4 |
| 3 |
(2)计算lg25+lg2lg50+21+
| 1 |
| 2 |
分析:(1)根据有理数指数幂的运算性质可求;
(2)利用对数的运算性质可求;
(2)利用对数的运算性质可求;
解答:解:(1)原式=0.34×
+(2-
)2+(2
)-
-24×(-0.75)=0.3+2-3+2-2-2-3=0.3+0.25=0.55.
(2)原式=lg25+2lg2lg5+lg22+21•2
log25=(lg5+lg2)2+21•2log2
=1+2
.
| 1 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
(2)原式=lg25+2lg2lg5+lg22+21•2
| 1 |
| 2 |
| 5 |
| 5 |
点评:本题考查有理数指数幂的运算性质、对数的运算性质,属基础题.
练习册系列答案
相关题目