题目内容
设函数f(x)=sin xcos x-
cos(π+x)cos x(x∈R).
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按b=
平移后得到函数y=g(x)的图象,求y=g(x)在[0,
]上的最大值.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按b=
(1)π (2)

(1)f(x)=
sin 2x+
cos2x
=
sin 2x+
(1+cos 2x)
=
sin 2x+
cos 2x+
=sin(2x+
)+
.
故f(x)的最小正周期为T=
=π.
(2)依题意g(x)=f(x-
)+
=sin [2(x-
)+
]+
+
=sin (2x-
)+
.
当x∈[0,
]时,2x-
∈[-
,
],g(x)为增函数,所以g(x)在[0,
]上的最大值为g(
)=
.
=
=
=sin(2x+
故f(x)的最小正周期为T=
(2)依题意g(x)=f(x-
=sin [2(x-
=sin (2x-
当x∈[0,
练习册系列答案
相关题目