题目内容
20.在等差数列{an}中,a3+a6+a9=27,设数列{an}的前n项和为Sn,则S11=( )| A. | 18 | B. | 99 | C. | 198 | D. | 297 |
分析 由等差数列的性质求出a1+a11=a3+a9=2a6,代入求和公式即可得出答案.
解答 解:等差数列{an}中,a3+a6+a9=27,
所以a1+a11=a3+a9=2a6=18,
所以S11=$\frac{11×{(a}_{1}{+a}_{11})}{2}$=$\frac{11×18}{2}$=99.
故选:B.
点评 本题考查了等差数列的性质和求和公式问题,是基础题目.
练习册系列答案
相关题目
8.2010年广东亚运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如表:
甲系列:
乙系列:
(Ⅰ)现该运动员最后一个出场,其之前运动员的最高得分为118分.若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX.
甲系列:
| 动作 | K | D | ||
| 得分 | 100 | 80 | 40 | 10 |
| 概率 | $\frac{3}{4}$ | $\frac{1}{4}$ | $\frac{3}{4}$ | $\frac{1}{4}$ |
| 动作 | K | D | ||
| 得分 | 90 | 50 | 20 | 0 |
| 概率 | $\frac{9}{10}$ | $\frac{1}{10}$ | $\frac{9}{10}$ | $\frac{1}{10}$ |
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX.
5.对于复平面,下列命题中真命题的是( )
| A. | 虚数集和各个象限内的点的集合是一一对应的 | |
| B. | 实、虚部都是负数的虚数的集合与第二象限的点的集合是一一对应的 | |
| C. | 实部是负数的复数的集合与第二、三象限的点的集合是一一对应的 | |
| D. | 实轴上侧的点的集合与虚部为正数的复数的集合是一一对应的 |
10.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{4}+{a}_{6}}{{b}_{3}+{b}_{7}}$=( )
| A. | $\frac{2}{3}$ | B. | $\frac{14}{9}$ | C. | $\frac{9}{14}$ | D. | $\frac{3}{2}$ |