题目内容
14.在△ABC中,若sinB、cos$\frac{A}{2}$、sinC成等比数列,则此三角形的形状是等腰三角形.分析 由题意和等比数列可得cos2$\frac{A}{2}$=sinBsinC,由三角函数公式化简可得B=C,可得等腰三角形.
解答 解:∵在△ABC中sinB、cos$\frac{A}{2}$、sinC成等比数列,
∴cos2$\frac{A}{2}$=sinBsinC,∴$\frac{1+cosA}{2}$=sinBsinC,
∴1+cosA=2sinBsinC,∴1-cos(B+C)=2sinBsinC,
∴1-cosBcosC+sinBsinC=2sinBsinC,
∴cosBcosC+sinBsinC=1,即cos(B-C)=1,
由三角形内角的范围可得B-C=0,即B=C,
∴△ABC为等腰三角形.
故答案为:等腰.
点评 本题考查三角形形状的判断,涉及等比数列和三角函数化简,属中档题.
练习册系列答案
相关题目
4.已知实数x,y满足$\left\{\begin{array}{l}x≤3\\ y≤4\\ 4x+3y-12≥0\end{array}\right.$则z=x2+y2的取值范围是( )
| A. | [3,5] | B. | [9,25] | C. | $[\frac{12}{5},5]$ | D. | $[\frac{144}{25},25]$ |
5.在△ABC中,若sinC(cosA+cosB)=sinA+sinB,则△ABC的形状是( )
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
9.
在长方体ABCD-A1B1C1D1中,M为AC与BD的交点,若$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,则下列向量中与$\overrightarrow{{B}_{1}M}$相等的向量是( )
| A. | -$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ | B. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ | D. | -$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$ |