题目内容

13.已知等差数列{an}的前n项和为Sn,公差d>0,且a2a3=40,a1+a4=13,公比为q(0<q<1)的等比数列{bn}中,b1、b3、b5∈{$\frac{1}{60}$,$\frac{1}{32}$,$\frac{1}{20}$,$\frac{1}{8}$,$\frac{1}{2}$}.
(1)求数列{an}、{bn}的通项公式an、bn
(2)若数列{cn}满足c2n-1=an,c2n=bn,求数列{cn}的前n项和Tn

分析 (1)由a2a3=40,a1+a4=13,d>0.利用等差数列的通项公式可得$\left\{\begin{array}{l}{({a}_{1}+d)({a}_{1}+2d)=40}\\{2{a}_{1}+3d=13}\end{array}\right.$,解出即可.公比为q(0<q<1)的等比数列{bn}中,b1,b3,b5∈{$\frac{1}{60}$,$\frac{1}{32}$,$\frac{1}{20}$,$\frac{1}{8}$,$\frac{1}{2}$}.可得b1=$\frac{1}{2}$,b3=$\frac{1}{8}$,b5=$\frac{1}{32}$.利用等比数列的通项公式解出即可.
(2)由c2n-1=an=3n-1,c2n=bn=$(\frac{1}{2})^{n}$.对n分类讨论,利用等差数列与等比数列的前n项公式即可得出.

解答 解:(1)由a2a3=40,a1+a4=13,d>0.
可得$\left\{\begin{array}{l}{({a}_{1}+d)({a}_{1}+2d)=40}\\{2{a}_{1}+3d=13}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=3}\end{array}\right.$,
∴an=2+3(n-1)=3n-1.
∵公比为q(0<q<1)的等比数列{bn}中,b1,b3,b5∈{$\frac{1}{60}$,$\frac{1}{32}$,$\frac{1}{20}$,$\frac{1}{8}$,$\frac{1}{2}$}.
∴b1=$\frac{1}{2}$,b3=$\frac{1}{8}$,b5=$\frac{1}{32}$.
∴$\frac{1}{2}{q}^{2}$=$\frac{1}{8}$,解得q=$\frac{1}{2}$.
∴bn=$\frac{1}{2}×(\frac{1}{2})^{n-1}$=$(\frac{1}{2})^{n}$.
(2)∵c2n-1=an=3n-1,c2n=bn=$(\frac{1}{2})^{n}$.
∴当n=2k(k∈N*)时,数列{cn}的前n项和Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k
=[2+5+…+(3k-1)]+$[\frac{1}{2}+(\frac{1}{2})^{2}+…+(\frac{1}{2})^{k}]$
=$\frac{k(2+3k-1)}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{k}})}{1-\frac{1}{2}}$
=$\frac{n(3n+2)}{8}$+1-$(\frac{1}{2})^{\frac{n}{2}}$.

当n=2k-1时,数列{cn}的前n项和Tn=Tn-1+c2k-1
=$\frac{(n-1)(3n-1)}{8}$+1-$(\frac{1}{2})^{n-1}$+3k-1
=$\frac{(n-1)(3n-1)}{8}$-$(\frac{1}{2})^{n-1}$+$\frac{3(n+1)}{2}$.
综上可得:Tn=$\left\{\begin{array}{l}{\frac{n(3n+2)}{8}+1-(\frac{1}{2})^{\frac{n}{2}},n为偶数}\\{\frac{(n-1)(3n-1)}{8}-(\frac{1}{2})^{n-1}+\frac{3(n+1)}{2},n为奇数}\end{array}\right.$.

点评 本题考查了等比数列与等差数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网