题目内容
在△ABC中,内角A,B,C所对边的长分别为a,b,c,且acosC,bcosB,ccosA满足2bcosB=acosC+ccosA,若b=
,则a+c的最大值为( )
| 3 |
A、
| ||
| B、3 | ||
C、2
| ||
| D、9 |
考点:正弦定理
专题:计算题,解三角形
分析:利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2-ac,由基本不等式可得:ac≤3,代入:3=(a+c)2-3ac可得a+c的最大值.
解答:
解:2bcosB=ccosA+acosC,
由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,
∴2sinBcosB=sinB,
又sinB≠0,
∴cosB=
,
∴B=
.
∵由余弦定理可得:3=a2+c2-ac,
∴可得:3≥2ac-ac=ac
∴即有:ac≤3,代入:3=(a+c)2-3ac可得:(a+c)2=3+3ac≤12
∴a+c的最大值为2
.
故选:C.
由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,
∴2sinBcosB=sinB,
又sinB≠0,
∴cosB=
| 1 |
| 2 |
∴B=
| π |
| 3 |
∵由余弦定理可得:3=a2+c2-ac,
∴可得:3≥2ac-ac=ac
∴即有:ac≤3,代入:3=(a+c)2-3ac可得:(a+c)2=3+3ac≤12
∴a+c的最大值为2
| 3 |
故选:C.
点评:该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.
练习册系列答案
相关题目
设函数f(x)=x+
(0≤x≤2),若当x=0时函数值最大,则实数a的取值范围是( )
| a |
| x+1 |
| A、a≥1 | B、a≤1 |
| C、a≥3 | D、a≤3 |
已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积为( )
| A、5 | ||
| B、10 | ||
C、
| ||
D、
|
用数字1,2,3,4,5可以组成多少个没有重复数字的三位数( )
| A、60 | B、125 | C、50 | D、25 |