题目内容

11.若x,y满足条件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$,则z=$\frac{1}{2}$x+y的最大值为$\frac{9}{2}$.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$作出约束条件表示的平面区域如图所示.
联立$\left\{\begin{array}{l}{2x+3y-15=0}\\{3x-5y+6=0}\end{array}\right.$,解得A(3,3),
由z=$\frac{1}{2}$x+y,得$y=-\frac{1}{2}x+z$.
由图可知,当直线经过点(3,3)时,z=$\frac{1}{2}$x+y有最大值$\frac{1}{2}×3+3=\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网