题目内容
11.若x,y满足条件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$,则z=$\frac{1}{2}$x+y的最大值为$\frac{9}{2}$.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$作出约束条件表示的平面区域如图所示.![]()
联立$\left\{\begin{array}{l}{2x+3y-15=0}\\{3x-5y+6=0}\end{array}\right.$,解得A(3,3),
由z=$\frac{1}{2}$x+y,得$y=-\frac{1}{2}x+z$.
由图可知,当直线经过点(3,3)时,z=$\frac{1}{2}$x+y有最大值$\frac{1}{2}×3+3=\frac{9}{2}$.
故答案为:$\frac{9}{2}$.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
1.已知集合A={x|x≥a},B={x|1≤x<2},且A∪∁RB=R,则实数a的取值范围是( )
| A. | (-∞,1] | B. | (-∞,1) | C. | [2,+∞) | D. | (2,+∞) |
2.已知函数f(x)是定义在R上的偶函数,若对任意x∈R,都有f(4+x)=f(-x),且当x∈[0,2]时,f(x)=2x-1,则下列结论不正确的是( )
| A. | 函数f(x)的最小正周期为4 | B. | f(1)<f(3) | ||
| C. | f(2016)=0 | D. | 函数f(x)在区间[-6,-4]上单调递减 |
6.已知复数z=-1+i,则复数$\frac{z+3}{\overline z+2}$的模为( )
| A. | $\sqrt{10}$ | B. | $\frac{{\sqrt{10}}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |