题目内容
16.60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥平面PAD;
(2)取AB=2,在线段PD上是否存在点H,使得EH与平面PAD所成最大角的正切值为$\frac{{\sqrt{6}}}{2}$,若存在,请求出H点的位置,若不存在,请说明理由.
分析 (1)由已知可得△ABC为正三角形,由E为BC的中点,得AE⊥BC.可得AE⊥AD.再由PA⊥平面ABCD,得PA⊥AE.由线面垂直的判定得AE⊥平面PAD;
(2)设线段PD上存在一点H,连接AH,EH.由(1)知AE⊥平面PAD,可得∠EHA为EH与平面PAD所成的角.可知当AH最短时,即当AH⊥PD时,∠EHA最大,求解直角三角形得答案.
解答 (1)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形,
∵E为BC的中点,∴AE⊥BC.![]()
又BC∥AD,因此AE⊥AD.
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE.
而PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AE⊥平面PAD;
(2)解:设线段PD上存在一点H,连接AH,EH.
由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=$\sqrt{3}$,
∴当AH最短时,即当AH⊥PD时,∠EHA最大,
此时$tan∠EHA=\frac{AE}{AH}=\frac{\sqrt{3}}{AH}=\frac{\sqrt{6}}{2}$,因此AH=$\sqrt{2}$.
∴线段PD上存在点H,
当DH=$\sqrt{2}$时,使得EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$.
点评 本题考查直线与平面垂直的判定,考查了直线与平面所成角的求法,考查空间想象能力和思维能力,是中档题.
练习册系列答案
相关题目
5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),以双曲线C的一个顶点为圆心,a为半径的圆被双曲线C截得劣弧长为$\frac{2π}{3}$a,则双曲线C的离心率为( )
| A. | $\frac{6}{5}$ | B. | $\frac{2\sqrt{10}}{5}$ | C. | $\frac{4\sqrt{2}}{5}$ | D. | $\frac{4\sqrt{3}}{5}$ |