题目内容
以双曲线| x2 |
| 4 |
| y2 |
| 12 |
分析:先求出双曲线的顶点和焦点,从而得到椭圆的焦点和顶点,进而得到椭圆方程.
解答:解:双曲线
-
=1的顶点为(2,0)和(-2,0),焦点为(-4,0)和(4,0).
∴椭圆的焦点坐标是(2,0)和(-2,0),顶点为(-4,0)和(4,0).
∴椭圆方程为
+
=1.
故答案为:
+
=1.
| x2 |
| 4 |
| y2 |
| 12 |
∴椭圆的焦点坐标是(2,0)和(-2,0),顶点为(-4,0)和(4,0).
∴椭圆方程为
| x2 |
| 16 |
| y2 |
| 12 |
故答案为:
| x2 |
| 16 |
| y2 |
| 12 |
点评:本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
练习册系列答案
相关题目
以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
以双曲线
-y2=1的中心为顶点,左焦点为焦点的抛物线方程是( )
| x2 |
| 4 |
A、y2=-2
| ||
B、y2=-2
| ||
C、y2=-4
| ||
D、y2=-4
|