题目内容

15.阅读如右图所示的程序框图,则输出的值是(  )
A.6B.18C.27D.124

分析 运行程序,即可得出结论.

解答 解:程序在运行过程中各变量的值如下表示:
s=1,n=2;s=3•2=6,n=3;s=(6+3)•3=27,n=4,退出循环,
故选C.

点评 本题主要考查了循环结构,先执行后判定是直到型循环,解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.

练习册系列答案
相关题目
10.某校数学兴趣小组在研究本地的城市道路与汽车保有量之间的关系(即某地区道路的总里程数和该地区拥有的汽车数量之间的关系)时,得到了近8年的城市道路总里程x(单位:百公里)和汽车保有量y(单位:百辆)的数据如下表:
数据编号20082009201020112012201320142015
道路里程数x120130140150160170180190
汽车保有量y144154160168176180186190
(Ⅰ)若某年的两个值都不小于170时,我们将该年称为“出行便捷年”.现从这8年中任取5年,求恰有2年为“出行便捷年”的概率(请用分数作答).
(Ⅱ)根据上表数据,用变量y和x的相关系数说明y与x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:相关系数$r=\frac{{\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}\sum_{i=1}^8{{{({y_i}-\overline y)}^2}}}}}$;回归直线的方程是:$\hat y=\hat bx+a$,
其中$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-\hat b\overline x$,${\hat y_i}$是与xi对应的回归估计值.
参考数据:$\overline x=155$,$\overline y=169.75$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}=4200$,$\sum_{i=1}^8{{{({y_i}-\overline y)}^2}}=1827.5$,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}=2750$,$\sqrt{4200}≈64.80$,$\sqrt{1827.5}≈42.75$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网