题目内容

13.如图所示,在四边形ABCD中,已知AC=$\sqrt{6}+\sqrt{2}$,AD=2$\sqrt{2}$,DC=2$\sqrt{3}$,AD∥BC.
(1)求∠DAC的值;
(2)当sin∠BAC+sin∠ABC取得最大值时,求四边形ABCD的面积.

分析 (1)在△ACD中使用余弦定理解出cos∠DAC;
(2)由(1)知∠BAC+∠ABC=$\frac{2π}{3}$,利用两角和差的三角函数公式化简sin∠BAC+sin∠ABC,求出其取得最大值时各角的大小,分别求出△ABC和△ACD的面积.

解答 解:(1)在△ACD中,由余弦定理得:cos∠DAC=$\frac{A{D}^{2}+A{C}^{2}-C{D}^{2}}{2AC•AD}$=$\frac{4+4\sqrt{3}}{8+8\sqrt{3}}$=$\frac{1}{2}$.
∴∠DAC=$\frac{π}{3}$.
(2)∵AD∥BC,∴∠ACB=∠DAC=$\frac{π}{3}$.
∴∠BAC+∠ABC=$\frac{2π}{3}$.
∴sin∠BAC+sin∠ABC=sinB+sin($\frac{2π}{3}-B$)=$\frac{3}{2}sinB$+$\frac{\sqrt{3}}{2}cosB$=$\sqrt{3}$sin(B+$\frac{π}{6}$).
∴当B=$\frac{π}{3}$时,sin∠BAC+sin∠ABC取得最大值.
此时∠BAC=∠B=$\frac{π}{3}$.∴△ABC是等边三角形.
∴S△ABC=$\frac{1}{2}×{2}^{2}×sin\frac{π}{3}$=$\sqrt{3}$.
S△ACD=$\frac{1}{2}AC•AD•sin∠DAC$=$\frac{1}{2}×(\sqrt{6}+\sqrt{2})×2\sqrt{2}×\frac{\sqrt{3}}{2}$=3+$\sqrt{3}$.
∴四边形ABCD的面积为S=S△ABC+S△ACD=3+2$\sqrt{3}$.

点评 本题考查了余弦定理,三角函数的恒等变换,正弦函数的性质,三角形的面积公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网