题目内容
6.已知离散型随机变量X的分布列如表:若E(X)=0,D(X)=1,则P(X<1)等于( )| X | -1 | 0 | 1 | 2 |
| P | a | b | c | $\frac{1}{12}$ |
| A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
分析 由E(X)=0,D(X)=1,结合离散型随机变量X的分布列性质列出方程组,求出a,b,c,由此能求出P(X<1)的值.
解答 解:∵E(X)=0,D(X)=1,
∴由离散型随机变量X的分布列,得:$\left\{\begin{array}{l}{a+b+c+\frac{1}{12}=1}\\{-a+c+\frac{2}{12}=0}\\{(-1)^{2}×a+{0}^{2}×b+{1}^{2}×c+{2}^{2}×\frac{1}{12}=1}\end{array}\right.$,且a≥0,b≥0,c≥0,
解得a=$\frac{5}{12}$,b=$\frac{1}{4}$,c=$\frac{1}{4}$,
∴P(X<1)=P(X=-1)+P(X=0)=$\frac{5}{12}$+$\frac{1}{4}$=$\frac{2}{3}$.
故选:D.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量X的分布列性质的合理运用.
练习册系列答案
相关题目
17.若复数z满足(1+i)(z+1)+1-i=0,则复数$\overline z$所对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
14.我市某苹果手机专卖店针对苹果6S手机推出无抵押分期付款购买方式,该店对最近购买苹果6S手机的100人进行统计(注:每人仅购买一部手机),统计结果如下表所示:
已知分3期付款的频率为0.15,请以此100人作为样本估计消费人群总体,并解决以下问题:
(Ⅰ)求a,b的值;
(Ⅱ)求“购买手机的3名顾客中(每人仅购买一部手机),恰好有1名顾客分4期付款”的概率;
(Ⅲ)若专卖店销售一部苹果6S手机,顾客分1期付款(即全款),其利润为1000元;分2期或3期付款,其利润为1500元;分4期或5期付款,其利润为2000元.用X表示销售一部苹果6S手机的利润,求X的分布列及数学期望.
| 付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
| 频数 | 35 | 25 | a | 10 | b |
(Ⅰ)求a,b的值;
(Ⅱ)求“购买手机的3名顾客中(每人仅购买一部手机),恰好有1名顾客分4期付款”的概率;
(Ⅲ)若专卖店销售一部苹果6S手机,顾客分1期付款(即全款),其利润为1000元;分2期或3期付款,其利润为1500元;分4期或5期付款,其利润为2000元.用X表示销售一部苹果6S手机的利润,求X的分布列及数学期望.
1.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为60°的两个单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,$\overrightarrow{a}⊥\overrightarrow{b}$,则λ=( )
| A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{2}$ | D. | 2 |
16.函数$y=[sin(\frac{π}{4}-x)-sin\frac{π}{4}]•[cos(\frac{π}{4}+x)+cos\frac{π}{4}]$是( )
| A. | 最小正周期为π的奇函数 | B. | 最小正周期为π的偶函数 | ||
| C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为$\frac{π}{2}$的偶函数 |