题目内容
15.若对任意实数x,满足不等式-x2+ax+1<0恒成立,则实数a的取值范围是∅.分析 根据二次函数的性质判断即可.
解答 解:-x2+ax+1<0恒成立,
∴x2-ax-1>0恒成立,
∴△=a2+4<0,显然无解,
故答案为∅.
点评 考查了二次函数利用判别式判断函数与x轴交点问题.
练习册系列答案
相关题目
5.定义在(-1,1]的函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,且当x∈[0,1]时,f(x)=-x,若g(x)=f(x)+kx+k有一个零点,则实数k的取值范围是( )
| A. | [2,+∞) | B. | [0,$\frac{1}{2}$]∪(2,+∞) | C. | (-$\frac{1}{2}$,+∞) | D. | [-$\frac{1}{2}$,0]∪[2,+∞) |
6.若ω≠0,函数f(x)=$\frac{tanωx-\sqrt{3}}{\frac{\sqrt{3}}{3}+tanωx}$图象的相邻两个对称中心之间的距离是$\frac{π}{2}$,则ω的值是( )
| A. | $\frac{π}{2}$ | B. | ±2 | C. | 2 | D. | ±1 |
3.已知函数f(x)=$\frac{ln(2x)}{x}$,关于x的不等式f2(x)+af(x)>0只有两个整数解,则实数a的取值范围是( )
| A. | ($\frac{1}{3}$,ln2] | B. | (-ln2,-$\frac{1}{3}$ln6) | C. | (-ln2,-$\frac{1}{3}$ln6] | D. | ($\frac{1}{3}$ln6,ln2) |
20.函数f(x)=2x${\;}^{\frac{1}{3}}$的图象( )
| A. | 关于y轴对称 | B. | 关于x轴对称 | C. | 关于直线y=x对称 | D. | 关于原点对称 |