题目内容
8.函数y=sinx-cosx的递增区间是( )| A. | [2kπ+$\frac{π}{4}$,2kπ+$\frac{5π}{4}$,k∈Z] | B. | [2kπ+$\frac{5π}{4}$,2kπ+$\frac{9π}{4}$,k∈Z] | ||
| C. | [2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$,k∈Z] | D. | [2kπ+$\frac{3π}{4}$,2kπ+$\frac{7π}{4}$,k∈Z] |
分析 首先,利用辅助角公式进行化简函数解析式,然后,结合三角函数的性质求解.
解答 解:f(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$)
令-$\frac{π}{2}$+2kπ≤x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{π}{4}$+2kπ≤x≤$\frac{3π}{4}$+2kπ,k∈Z,
∴函数f(x)=sinx-cosx的单调递增区间[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ],(k∈Z),
故选:C.
点评 本题重点考查了辅助角公式、正弦函数的单调性等知识,属于基础题.
练习册系列答案
相关题目
19.已知直线l1:x+(1+m)y=2-m与l2:2mx+4y=-16平行,则实数m的值是( )
| A. | 1 | B. | -2 | C. | -1或2 | D. | 1或-2 |
16.
一个几何体的三视图如图所示,则该几何体的表面积是( )
| A. | 28 | B. | 27 | C. | 24 | D. | 21 |
6.已知点A的坐标为(5,2),F为抛物线y2=2x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,则点P的坐标是( )
| A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,2) | C. | (2,2) | D. | (4,2) |
7.“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据日前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:
(Ⅰ)求统计数据表中a,d的值;
(Ⅱ)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用”DD共享单车“情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;
(Ⅲ)根据以上列联表,判断使用”DD共享单车“的人群中,能否有95%的把握认为”性别“与”年龄“有关,并说明理由.
参考数表
参考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
| 男性 | 女性 | 合计 | |
| 20~35岁 | a | 40 | 100 |
| 36~50岁 | 40 | d | 90 |
| 合计 | 100 | 90 | 190 |
(Ⅱ)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用”DD共享单车“情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;
(Ⅲ)根据以上列联表,判断使用”DD共享单车“的人群中,能否有95%的把握认为”性别“与”年龄“有关,并说明理由.
参考数表
| P(K2>k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |