题目内容

函数y=f(x)(f(x)≠0)的图象与x=1的交点个数是
 
考点:函数的图象
专题:函数的性质及应用
分析:根据函数的定义可得函数y=f(x)的图象与直线x=1至多有一个交点,由此得到结论.
解答: 解:根据函数y=f(x)的定义,当x在定义域内任意取一个值,都有唯一的一个函数值f(x)与之对应,函数y=f(x)的图象与直线x=1有唯一交点.
当x不在定义域内时,函数值f(x)不存在,函数y=f(x)的图象与直线x=1没有交点.
故函数y=f(x)的图象与直线x=1至多有一个交点,即函数y=f(x)的图象与直线x=1的交点的个数是0或1,
故答案为 0或1.
点评:本题主要考查函数的定义,函数图象的作法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网