ÌâÄ¿ÄÚÈÝ

ÒÑÖªÇúÏßC£ºy2=2x+aÔÚµãPn£¨n£¬
2n+a
£©£¨a£¾0£¬n¡ÊN£©´¦µÄÇÐÏßlnµÄбÂÊΪkn£¬Ö±Ïßln½»xÖᣬyÖá·Ö±ðÓÚµãAn£¨xn£¬0£©£¬Bn£¨0£¬yn£©£¬ÇÒ|x0|=|y0|£®¸ø³öÒÔϽáÂÛ£º
¢Ùa=1£»
¢Úµ±n¡ÊN*ʱ£¬ynµÄ×îСֵΪ
5
4
£»
¢Ûµ±n¡ÊN*ʱ£¬kn£¼
2
sin
1
2n+1
£»
¢Üµ±n¡ÊN*ʱ£¬¼ÇÊýÁÐ{kn}µÄǰnÏîºÍΪSn£¬ÔòSn£¼
2
(
n+1
-1)
£®
ÆäÖУ¬ÕýÈ·µÄ½áÂÛÓÐ
 
£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©
¿¼µã£ºÀûÓõ¼ÊýÑо¿ÇúÏßÉÏijµãÇÐÏß·½³Ì
רÌ⣺¼ÆËãÌâ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ,µ¼ÊýµÄ¸ÅÄî¼°Ó¦ÓÃ,µãÁС¢µÝ¹éÊýÁÐÓëÊýѧ¹éÄÉ·¨
·ÖÎö£ºÇó³öµ¼Êý£¬Çó³öÇÐÏßµÄбÂÊ£¬Çó³öÇÐÏß·½³Ì£¬Áîx=0£¬y=0£¬n=0£¬µÃµ½·½³Ì£¬½âµÃa£¬¼´¿ÉÅжϢ٣»
Áî
2n+1
=t£¨t¡Ý
3
£©£¬µÃµ½ynÔÚt¡Ý
3
ÉϵÝÔö£¬¼´¿ÉµÃµ½×îСֵ£¬¼´¿ÉÅжϢڣ»
Áîu=
1
2n+1
£¨0£¼u¡Ü
1
3
£©£¬ÔòÓÐy=
2
sinu-u£¬Çó³öµ¼Êý£¬Åжϵ¥µ÷ÐÔ£¬¼´¿ÉÅжϢۣ»
ÓÉÓÚ£¨
a+b
2
£©2¡Ü
a2+b2
2
£¨µ±ÇÒ½öµ±a=bÈ¡µÈºÅ£©£¬ÔòÓÐ
n
+
n+1
£¼
2
n+n+1
£¬ÔòÓÐ
1
2n+1
£¼
2
n
+
n+1
=
2
£¨
n+1
-
n
£©£¬ÔÙÓÉÁÑÏîÏàÏûÇóºÍ£¬¼´¿ÉÅжϢܣ®
½â´ð£º ½â£º¶ÔÓÚ¢Ù£¬ÓÉy2=2x+a£¬µ±x£¾0ʱ£¬y=
2x+a
£¬
y¡ä=
1
2x+a
£¬Ôòkn=
1
2n+a
£¬
ÇÐÏß·½³ÌΪy-
2n+a
=
1
2n+a
£¨x-n£©£¬
Áîx=0£¬Ôòy=
n+a
2n+a
£¬Áîy=0£¬Ôòx=n-£¨2n+a£©=-n-a£¬
¼´ÓÐxn=-n-a£¬yn=
n+a
2n+a
£¬
ÓÉÓÚ|x0|=|y0|£¬Ôò|a|=|
a
a
|£¬½âµÃ£¬a=1£¬
Ôò¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬ÓÉÓÚyn=
n+1
2n+1
£¬Áî
2n+1
=t£¨t¡Ý
3
£©£¬Ôòyn=
1+
t2-1
2
t
=
1
2
£¨t+
1
t
£©ÔÚt¡Ý
3
ÉϵÝÔö£¬
ÔòÓÐt=
3
È¡µÃ×îСֵ£¬ÇÒΪ
1
2
£¨
3
+
3
3
£©=
2
3
3
£¬Ôò¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬µ±n¡ÊN*ʱ£¬kn=
1
2n+1
£¬Áîu=
1
2n+1
£¨0£¼u¡Ü
1
3
£©£¬ÔòÓÐy=
2
sinu-u£¬y¡ä=
2
cosu-1£¬
ÓÉÓÚ0£¼u¡Ü
1
3
£¼
¦Ð
4
£¬Ôò
1
2
¡Ücosu£¼1
£¬¼´ÓÐy¡ä£¾0£¬yÔÚ0£¼u¡Ü
1
3
ÉϵÝÔö£¬¼´ÓÐy£¾0£¬
¼´ÓÐkn£¼
2
sin
1
2n+1
³ÉÁ¢£¬Ôò¢ÛÕýÈ·£»
¶ÔÓڢܣ¬µ±n¡ÊN*ʱ£¬¼ÇÊýÁÐ{kn}µÄǰnÏîºÍΪSn£¬kn=
1
2n+1

ÓÉÓÚ£¨
a+b
2
£©2¡Ü
a2+b2
2
£¨µ±ÇÒ½öµ±a=bÈ¡µÈºÅ£©£¬
Ôòa+b¡Ü
2(a2+b2)
£¬ÔòÓÐ
n
+
n+1
£¼
2
n+n+1
£¬
ÔòÓÐ
1
2n+1
£¼
2
n
+
n+1
=
2
£¨
n+1
-
n
£©£¬
ÔòSn=
1
3
+
1
5
+¡­+
1
2n+1
£¼
2
[£¨
2
-1
£©+£¨
3
-
2
£©+¡­+£¨
n+1
-
n
£©]
=
2
£¨
n+1
-1£©£®Ôò¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄÔËÓãºÇóÇÐÏß·½³Ì£¬¿¼²éº¯ÊýµÄµ¥µ÷ÐÔµÄÔËÓãºÇó×îÖµºÍ±È½Ï´óС£¬¿¼²éÊýÁеÄÇóºÍ£º·ÅËõºÍÁÑÏîÏàÏû·¨£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø