题目内容
17.已知f(x)是定义在[-3,3]上的奇函数,当x∈[0,3]时,f(x)=log2(x+1)函数g(x)=x2-2x+m,x∈[-3,3].如果对于任意x1∈[-3,3],存在x2∈[-3,3],使得g(x2)=f(x1),则实数m的取值范围是-13≤m≤-1.分析 求出函数f(x)的值域,根据条件,确定两个函数的最值之间的关系即可得到结论.
解答 解:∵f(x)是定义在[-3,3]上的奇函数,∴f(0)=0,
当x∈(0,3]时,f(x)=log2(x+1)∈(0,2],
则当x∈[-3,3]时,f(x)∈[-2,2],
若对于?x1∈[-3,3],?x2∈[-3,3],使得g(x2)=f(x1),
则等价为g(x)max≥2且g(x)min≤-2,
∵g(x)=x2-2x+m=(x-1)2+m-1,x∈[-3,3],
∴g(x)max=g(-3)=15+m,g(x)min=g(1)=m-1,
则满足15+m≥2且m-1≤-2,
解得m≥-13且m≤-1,
故答案为:-13≤m≤-1.
点评 本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.
练习册系列答案
相关题目
12.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:
男生
女生
(I)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;
(II)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
(${x}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
| 睡眠时间(小时) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
| 人数 | 1 | 5 | 6 | 5 | 3 |
| 睡眠时间(小时) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
| 人数 | 2 | 4 | 8 | 4 | 2 |
(I)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;
(II)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
| 睡眠时间少于7小时 | 睡眠时间不少于7小时 | 合计 | |
| 男生 | |||
| 女生 | |||
| 合计 |
2.已知等差数列{an}前四项中第二项为606,前四项和S4为3883,则该数列第4项为( )
| A. | 3074 | B. | 2065 | C. | 2024 | D. | 2016 |
9.已知函数y=2sin($\frac{x}{2}$-$\frac{π}{4}$)
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.
6.已知点A(0,2),B(4,0),C(-2,1),若直线CD与直线AB相交,且交点D在线段AB上,直线CD的斜率为k,求$k+\frac{1}{2}+\frac{1}{{k+\frac{1}{2}}}$的取值范围( )
| A. | .$(2,\frac{10}{3})$ | B. | $(-∞,\frac{10}{3})$ | C. | $[2,\frac{10}{3}]$ | D. | [2,+∞) |