题目内容

8.若函数f(x)=$\left\{\begin{array}{l}{x^2}+1(x>0)\\ π(x=0)\\ 0(x<0)\end{array}$,则f(f(f(-2016)))=π2+1.

分析 由已知得f(-2016)=0,从而f(f(-2016))=f(0)=π,进而f(f(f(-2016)))=f(π),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x^2}+1(x>0)\\ π(x=0)\\ 0(x<0)\end{array}$,
∴f(-2016)=0,
f(f(-2016))=f(0)=π,
f(f(f(-2016)))=f(π)=π2+1.
故答案为:π2+1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网