题目内容
| lim |
| n→∞ |
| ||
|
考点:极限及其运算
专题:计算题
分析:利用组合数公式展开,化简后分子分母同时除以n2求得极限.
解答:
解:
=
=
=
=
=
.
故答案为:
.
| lim |
| n→∞ |
| ||
|
=
| lim |
| n→∞ |
| ||
|
=
| lim |
| n→∞ |
| (n+1)2 |
| (2n+2)(2n+1) |
=
| lim |
| n→∞ |
| n2+2n+1 |
| 4n2+6n+2 |
=
| lim |
| n→∞ |
1+
| ||||
4+
|
=
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
点评:本题考查了组合数公式,考查了数列极限的求法,是基础题.
练习册系列答案
相关题目
设集合M={-1,0,1},N={x|x(x-1)=0},则M∩N=( )
| A、{-1,0,1} | B、{0,1} |
| C、{1} | D、{0} |
如图,在复平面内,复数z1和z2对应的点分别是A和B,则|
|=( )

| Z1 |
| Z2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|