题目内容
18.若集合M={-2,-1,0,1,2},N={x|x2<3},则M∩N等于( )| A. | ∅ | B. | {-1,1} | C. | {-2,2} | D. | {-1,0,1} |
分析 求出N中不等式的解集确定出N,找出M与N的交集即可.
解答 解:由N中不等式解得:-$\sqrt{3}$<x<$\sqrt{3}$,即N=(-$\sqrt{3}$,$\sqrt{3}$),
∵M={-2,-1,0,1,2},
∴M∩N={-1,0,1},
故选:D.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
13.如图,平行六面体ABCD-A1B1C1D1中,AC与BD交于点M,设$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}$=$\overrightarrow c$,则$\overrightarrow{{B_1}M}$=( )

| A. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$ | D. | $-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$ |
3.已知实数x,y满足方程x2+y2=1,则$\frac{y}{x-2}$的取值范围是( )
| A. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | B. | $({-∞,-\frac{{\sqrt{3}}}{3}}]∪[{\frac{{\sqrt{3}}}{3},+∞})$ | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | $({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$ |