题目内容

在△ABC中,A=60°,B=45°,b=2
2
,则a=
 
考点:正弦定理
专题:三角函数的求值,解三角形
分析:由A与B的度数求出sinA与sinB的值,再由b的值,利用正弦定理即可求出a的值.
解答: 解:∵在△ABC中,A=60°,B=45°,b=2
2

∴由正弦定理得:
a
sinA
=
b
sinB
,即a=
bsinA
sinB
=
2
2
×
3
2
2
2
=2
3

故答案为:2
3
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网