题目内容

9.(1)已知等比数列{an}中,a1=-1,a4=64,求q与S4
(2)已知等差数列{an}中,a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,求n及an

分析 (1)由a1=-1,a4=64,可得-q3=64,解得q.利用求和公式即可得出.
(2)等差数列{an}中,a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,可得-15=$\frac{3}{2}$n+$\frac{n(n-1)}{2}$×$(-\frac{1}{2})$,解得n,再利用通项公式即可得出.

解答 解:(1)∵a1=-1,a4=64,∴-q3=64,解得q=-4.
∴S4=$\frac{-[(-4)^{4}-1]}{-4-1}$=51.
(2)∵等差数列{an}中,a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,
∴-15=$\frac{3}{2}$n+$\frac{n(n-1)}{2}$×$(-\frac{1}{2})$,化为n2-7n-60=0,n∈N*,解得n=12.
∴a12=$\frac{3}{2}$+11×$(-\frac{1}{2})$=-4.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网