题目内容

已知在数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(1)证明数列{an}是等差数列,并求an的通项公式;
(2)设数列{
1
anan+1
}的前n项和为Tn,证明:Tn
1
6
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知得得(2n+2)an+1=(n+1)(an+2+an),从而2an+1=an+2+an,由此能证明数列{an}是等差数列,并能求出an
(2)由
1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)
,利用裂项求和法能证明Tn
1
6
解答: (1)证明:∵在数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
∴(n+2)an+1-(n+1)an+2=1,
两式相减,得(2n+2)an+1=(n+1)(an+2+an),即2an+1=an+2+an
所以数列{an}是等差数列.
a1=3
2a1-a2=1
,得a2=5,∴d=a2-a1=5-3=2,
故an=3+(n-1)×2=2n+1.
(2)证明:∵
1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

∴Tn=
1
2
[(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n+1
-
1
2n+3
)]
=
1
2
(
1
3
-
1
2n+3
)

=
1
6
-
1
4n+6
1
6

∴Tn
1
6
点评:本题考查等差数列的证明和数列的通项公式的求法,考查不等式的证明,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网