题目内容
已知在数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*.
(1)证明数列{an}是等差数列,并求an的通项公式;
(2)设数列{
}的前n项和为Tn,证明:Tn<
.
(1)证明数列{an}是等差数列,并求an的通项公式;
(2)设数列{
| 1 |
| anan+1 |
| 1 |
| 6 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知得得(2n+2)an+1=(n+1)(an+2+an),从而2an+1=an+2+an,由此能证明数列{an}是等差数列,并能求出an.
(2)由
=
=
(
-
),利用裂项求和法能证明Tn<
.
(2)由
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 6 |
解答:
(1)证明:∵在数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*,
∴(n+2)an+1-(n+1)an+2=1,
两式相减,得(2n+2)an+1=(n+1)(an+2+an),即2an+1=an+2+an
所以数列{an}是等差数列.
由
,得a2=5,∴d=a2-a1=5-3=2,
故an=3+(n-1)×2=2n+1.
(2)证明:∵
=
=
(
-
),
∴Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
-
<
.
∴Tn<
.
∴(n+2)an+1-(n+1)an+2=1,
两式相减,得(2n+2)an+1=(n+1)(an+2+an),即2an+1=an+2+an
所以数列{an}是等差数列.
由
|
故an=3+(n-1)×2=2n+1.
(2)证明:∵
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
=
| 1 |
| 6 |
| 1 |
| 4n+6 |
| 1 |
| 6 |
∴Tn<
| 1 |
| 6 |
点评:本题考查等差数列的证明和数列的通项公式的求法,考查不等式的证明,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
经过点M(3,-1),且对称轴在坐标轴上的等轴双曲线的方程是( )
| A、y2-x2=8 |
| B、x2-y2=±8 |
| C、x2-y2=4 |
| D、x2-y2=8 |
在△ABC中,内角A.B.C依次成等差数列,AB=8,BC=5,则△ABC内切圆的面积是( )
A、
| ||
| B、3π | ||
| C、6π | ||
| D、12π |
已知全集U={1,2,3,4,5,6,7,8,9,10},集合A={1,3,5,7},B={2,4,5,7},则∁UA∩∁UB=( )
| A、{6,8,9,10} |
| B、{1,2,3,6,8,9,10} |
| C、{5,7} |
| D、{1,2,3,4,5,7} |