题目内容

10.在△ABC中,$a=2\sqrt{3}$,b=3,$cosA=-\frac{1}{3}$.
(Ⅰ)求sinB;
(Ⅱ)设BC的中点为D,求中线AD的长.

分析 (Ⅰ)由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{2\sqrt{3}}{\frac{2\sqrt{2}}{3}}=\frac{3}{sinB}$即可
(Ⅱ)在△ABC中,由余弦定理得a2=b2+c2-2bc•cosA⇒c=1,或c=-3(舍去),在△ADB中,由余弦定理得AD2=AB2+BD2-2AB•DBcosB=2即可.

解答 解:(Ⅰ)在△ABC中,$cosA=-\frac{1}{3}$.可得sinA=$\frac{2\sqrt{2}}{3}$,
由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{2\sqrt{3}}{\frac{2\sqrt{2}}{3}}=\frac{3}{sinB}$,
∴$sinB=\frac{\sqrt{6}}{3}$.
(Ⅱ)∵D是BC的中点,∴$DB=\sqrt{3}$,
在△ABC中,由余弦定理得a2=b2+c2-2bc•cosA⇒c=1,或c=-3(舍去),
在△ADB中,由余弦定理得AD2=AB2+BD2-2AB•DBcosB=2,
∴AD=$\sqrt{2}$.

点评 本题考查了正余弦定理的应用,考查了计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网