题目内容
1.在△ABC中,若ac=a2+c2-b2,则角B的大小为( )| A. | 30° | B. | 45° | C. | 60° | D. | 120° |
分析 直接利用余弦定理化简求解即可.
解答 解:因为ac=a2+c2-b2,所以cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
所以B=60°.
故选:C.
点评 本题考查三角形的解法,余弦定理的应用,考查计算能力.
练习册系列答案
相关题目
12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$若函数f(x)的图象在点A,B处的切线重合,则实数a的取值范围是( )
| A. | (2,+∞) | B. | (-∞,$\frac{1}{4}$) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,-2)∪($\frac{1}{4}$,+∞) |
9.设随机变量X的分布列为$P(X=i)=a•{({\frac{2}{3}})^i}i=1,2,3$,则a的值为( )
| A. | $\frac{17}{38}$ | B. | $\frac{27}{38}$ | C. | $\frac{17}{19}$ | D. | $\frac{27}{19}$ |
6.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| 喜欢游泳 | 不喜欢游泳 | 合计 | |
| 男生 | 10 | ||
| 女生 | 20 | ||
| 合计 |
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |