题目内容

11.已知数列{an}为等差数列,Sn为其前n项和,且a2=4,S5=30,数列{bn}满足b1+2b2+…+nbn=an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:b1b2+b2b3+…+bnbn+1<4.

分析 (I)利用等差数列的通项公式及其前n项和公式即可得出;
(II)利用递推关系、“裂项求和”方法即可得出.

解答 解:(Ⅰ)设数列{an}的公差为d,由a2=4,S5=30,
可得:$\left\{\begin{array}{l}{a_1}+d=4\\ 5{a_1}+\frac{5×4}{2}d=30\end{array}\right.$,
解得a1=2,d=2,
故数列{an}的通项公式为:an=2+(n-1)×2=2n.
(Ⅱ)由(1)可得b1+2b2+…+nbn=2n①
所以当n≥2时,b1+2b2+…+(n-1)bn-1=2(n-1)②
①-②得nbn=2,即${b_n}=\frac{2}{n}$,
又b1=a1=2也满足${b_n}=\frac{2}{n}$,∴${b_n}=\frac{2}{n},n∈{N^+}$.
∴${b_n}•{b_{n+1}}=\frac{4}{n(n+1)}=4(\frac{1}{n}-\frac{1}{n+1})$,
∴${b_1}{b_2}+{b_2}{b_3}+…+{b_n}b_{n+1}^{\;}=4(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})=4(1-\frac{1}{n+1})<4$.

点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网