ÌâÄ¿ÄÚÈÝ
14£®£¨1£©Çóy=g£¨x£©µÃ½âÎöʽ£¬
£¨2£©ÈôÖ±Ïßy=mÓ뺯Êýg£¨x£©Í¼ÏóÔÚ$x¡Ê[0£¬\frac{¦Ð}{2}]$ʱÓÐÁ½¸ö¹«¹²µã£¬Æäºá×ø±ê·Ö±ðΪx1£¬x2£¬Çóg£¨x1+x2£©µÄÖµ£»
£¨3£©ÒÑÖª¡÷ABCÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒc=3£¬g£¨C£©=1£®ÈôÏòÁ¿$\overrightarrow m=£¨1£¬sinA£©$Óë$\overrightarrow n=£¨2£¬sinB£©$¹²Ïߣ¬Çóa¡¢bµÄÖµ£®
·ÖÎö £¨1£©ÓÉͼÏó¿ÉÇóT£¬ÀûÓÃÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬ÓÖ$2¡Á\frac{¦Ð}{3}+ϕ=¦Ð$£¬¿ÉÇó¦Õ£¬ÓÉͼÏó±ä»»£¬µÃy=g£¨x£©µÃ½âÎöʽ£®
£¨2£©Óɺ¯ÊýͼÏóµÄ¶Ô³ÆÐÔ£¬¼´¿ÉÇóµÃ$g£¨{x_1}+{x_2}£©=g£¨\frac{2¦Ð}{3}£©=-\frac{1}{2}$£®
£¨3£©ÓÉÌâÒâ¿ÉµÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬ÓÉ·¶Î§0£¼C£¼¦Ð£¬¿ÉÇó$-\frac{¦Ð}{6}£¼2C-\frac{¦Ð}{6}£¼\frac{11¦Ð}{6}$£¬ÇóµÃCµÄÖµ£¬ÓÉÏòÁ¿¹²Ïß¿ÉÇósinB-2sinA=0£®ÓÉÕýÏÒ¶¨Àí $\frac{a}{sinA}=\frac{b}{sinB}$£¬µÃb=2a£¬ÓÉÓàÏÒ¶¨Àí£¬µÃ$9={a^2}+{b^2}-2abcos\frac{¦Ð}{3}$£¬ÁªÁ¢¼´¿É½âµÃa£¬bµÄÖµ£®
½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨1£©Óɺ¯Êýf£¨x£©µÄͼÏó£¬$T=4£¨\frac{7¦Ð}{12}-\frac{¦Ð}{3}£©=\frac{2¦Ð}{¦Ø}$£¬µÃ¦Ø=2£¬
ÓÖ$2¡Á\frac{¦Ð}{3}+ϕ=¦Ð$£¬
¿ÉµÃ£º$ϕ=\frac{¦Ð}{3}$£¬
ËùÒÔ$f£¨x£©=sin£¨2x+\frac{¦Ð}{3}£©$£¬¡£¨2·Ö£©
ÓÉͼÏó±ä»»£¬µÃ$g£¨x£©=f£¨x-\frac{¦Ð}{4}£©=sin£¨2x-\frac{¦Ð}{6}£©$£¬¡£¨4·Ö£©
£¨2£©Óɺ¯ÊýͼÏóµÄ¶Ô³ÆÐÔ£¬ÓÐ$g£¨{x_1}+{x_2}£©=g£¨\frac{2¦Ð}{3}£©=-\frac{1}{2}$£®¡£¨6·Ö£©
£¨3£©¡ß$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬
¡ß0£¼C£¼¦Ð£¬$-\frac{¦Ð}{6}£¼2C-\frac{¦Ð}{6}£¼\frac{11¦Ð}{6}$£¬
¡à$2C-\frac{¦Ð}{6}=\frac{¦Ð}{2}$£¬
¡à$C=\frac{¦Ð}{3}$£® ¡£¨7·Ö£©
¡ß$\overrightarrow mÓë\overrightarrow n$¹²Ïߣ¬
¡àsinB-2sinA=0£®
ÓÉÕýÏÒ¶¨Àí $\frac{a}{sinA}=\frac{b}{sinB}$£¬µÃb=2a£¬¢Ù¡£¨9·Ö£©
¡ßc=3£¬ÓÉÓàÏÒ¶¨Àí£¬µÃ$9={a^2}+{b^2}-2abcos\frac{¦Ð}{3}$£¬¢Ú¡£¨11·Ö£©
½â·½³Ì×é¢Ù¢Ú£¬µÃ$\left\{\begin{array}{l}a=\sqrt{3}\\ b=2\sqrt{3}\end{array}\right.$£® ¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÓɺ¯Êýy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÇó½âÎöʽ£¬Èý½Çº¯ÊýͼÏó±ä»»¹æÂÉ£¬Èý½Çº¯ÊýͼÏóµÄ¶Ô³ÆÐÔ£¬ÕýÏÒ¶¨Àí£¬ÓàÏÒ¶¨Àí£¬Æ½ÃæÏòÁ¿¹²ÏßµÄÐÔÖʵÈ֪ʶµÄ×ÛºÏÓ¦Ó㬿¼²éÁËת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | 24cm | B£® | 21cm | C£® | 19cm | D£® | 9cm |
| A£® | $\frac{3\sqrt{2}}{2}$ | B£® | $\frac{\sqrt{14}}{2}$ | C£® | $\frac{3\sqrt{2}}{4}$ | D£® | $\frac{3\sqrt{2}}{2}$-1 |
| A£® | $\frac{2}{3}$ | B£® | 1 | C£® | $\frac{1}{3}$ | D£® | 2 |