题目内容

6.已知角α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点P(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sinα
(2)求$\frac{sin2α+cos2α+1}{1+tanα}$的值.

分析 (1)利用任意角的三角函数的定义,求得sinα的值.
(2)利用同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)由三角函数定义得 x=-$\frac{3}{5}$,y=$\frac{4}{5}$,r=|OP|=1,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$,cosα=$\frac{x}{r}$=-$\frac{3}{5}$.
(2)原式=$\frac{2sinαcosα+{2cos}^{2}α-1+1}{1+\frac{sinα}{cosα}}$=$\frac{(2sinαcosα+{2cos}^{2}α)•cosα}{cosα+sinα}$=2cos2α=$\frac{18}{25}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网