题目内容

14.在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与路面垂直,且∠ABC=120°,路灯采用锥形灯罩,射出的光线如图中的阴影部分所示,∠ACD=60°,AD=24米,∠ACB=θ(30°≤θ≤45°).
(Ⅰ)求灯柱AB的高度(用ξ表示);
(Ⅱ)求灯柱AB与灯杆BC长度之和的最小值,及取最小值时θ的值.

分析 (Ⅰ)由条件求得∠BAC=60°-θ,∠CAD=30°+θ,∠ADC=90°-θ.△ACD中,利用正弦定理求得AC的值,在△ABC中,由正弦定理求得灯柱AB的高度的值.
(Ⅱ)在△ABC中,由正弦定理求得BC的值,再根据 S=AB+BC=8$\sqrt{3}$+16sin(2θ+60°).根据30°≤θ≤45°,利用正弦函数的定义域和值域求得S的最小值.

解答 解:(Ⅰ)∵∠ABC=120°,∠ACB=θ,∴∠BAC=60°-θ,
∵∠BAD=90°,∴∠CAD=30°+θ,
∵∠ACD=60°,∴∠ADC=90°-θ,
在△ACD中,∵$\frac{AD}{sin∠ACD}=\frac{AC}{sin∠ADC}$,∴$AC=\frac{24cosθ}{{sin{{60}°}}}=16\sqrt{3}cosθ$,
在△ABC中,∵$\frac{AB}{sin∠ACB}=\frac{AC}{sinB}$,∴$AB=\frac{ACsinθ}{{sin{{120}°}}}=\frac{{16\sqrt{3}sinθcosθ}}{{sin{{120}°}}}=16sin2θ$,
即灯柱AB的高度为16sin2θ米.…(6分)
(Ⅱ)在△ABC中,∵$\frac{BC}{sin∠BAC}=\frac{AC}{sinB}$,
∴$BC=\frac{{ACsin({{60}°}-θ)}}{{sin{{120}°}}}=32cosθsin({60°}-θ)=8\sqrt{3}+8\sqrt{3}cos2θ-8sin2θ$,
即$AB+BC=8\sqrt{3}+8\sqrt{3}cos2θ+8sin2θ=8\sqrt{3}+16sin(2θ+{60°})$,
∵30°≤θ≤45°,∴120°≤2θ+60°≤150°,
∴当θ=45°时,灯柱AB与灯杆BC长度之和的最小值为$8\sqrt{3}+8$米.…(12分)

点评 本题主要考查正弦定理的应用,三角形的内角和公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网