题目内容
2.如图画的某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的表面积为( )| A. | $144+2\sqrt{10}π$ | B. | $144+({2\sqrt{10}-2})π$ | C. | $128+2\sqrt{10}π$ | D. | $128+({2\sqrt{10}-2})π$ |
分析 根据几何体的三视图知,该几何体是四棱柱,
在上下底面各挖去一个圆锥体,
再根据图中数据,计算它的表面积.
解答 解:根据几何体的三视图知,该几何体是四棱柱,
在上下底面各挖去一个圆锥体,如图所示;![]()
根据图中数据,计算该几何体的表面积为
S=2×(4×4+4×6+4×6-π×12)+2×π×1×$\sqrt{{1}^{2}{+3}^{2}}$
=128+(2$\sqrt{10}$-2)π.
故选:D.
点评 本题考查了空间几何体三视图的应用问题,解题的关键是还原几何体的直观图,是中档题.
练习册系列答案
相关题目
13.
某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
| 广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
| 销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
17.设全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},则A∩B=( )
| A. | {x|x<4} | B. | {x|x≤4} | C. | {x|1≤x<4} | D. | {x|1≤x≤4} |
7.下列说法正确的是( )
| A. | 任何事件的概率总是在(0,1)之间 | |
| B. | 频率是客观存在的,与试验次数无关 | |
| C. | 概率是随机的,在试验前不能确定 | |
| D. | 随着试验次数的增加,频率一般会越来越接近概率 |
11.若f(x)=ex+sinx-cosx的导数为f'(x),则f'(0)等于( )
| A. | 2 | B. | ln2+1 | C. | ln2-1 | D. | ln2+2 |
12.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a-2)2=1,点A(0,3),若圆C上存在点M,满足|MA|=2|MO|(O为坐标原点),则实数a的取值范围是( )
| A. | [-3,0] | B. | (-∞,-3]∪[0,+∞) | C. | [0,3] | D. | (-∞,0]∪[3,+∞) |