题目内容
11.若f(x)=ex+sinx-cosx的导数为f'(x),则f'(0)等于( )| A. | 2 | B. | ln2+1 | C. | ln2-1 | D. | ln2+2 |
分析 根据题意,由f(x)的解析式计算可得f′(x)=ex+cosx+sinx,将x=0代入计算可得f'(0),即可得答案.
解答 解:根据题意,f(x)=ex+sinx-cosx,则f′(x)=ex+cosx+sinx,
则f'(0)=e0+cos0+sin0=2;
故选:A.
点评 本题考查导数的计算,关键是正确计算函数f(x)的导数.
练习册系列答案
相关题目
1.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F1,F2为椭圆的左、右焦点,O为坐标原点,点P为椭圆上一点,$|OP|=\frac{{\sqrt{2}}}{4}a$,且|PF1|,|F1F2|,|PF2|成等比数列,则椭圆的离心率为( )
| A. | $\frac{{\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
2.如图画的某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的表面积为( )
| A. | $144+2\sqrt{10}π$ | B. | $144+({2\sqrt{10}-2})π$ | C. | $128+2\sqrt{10}π$ | D. | $128+({2\sqrt{10}-2})π$ |
19.已知某几何体的三视图如图所示,则该几何体的体积为( )

| A. | $\frac{32}{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $\frac{{32\sqrt{3}}}{3}$ | D. | $\frac{{64\sqrt{3}}}{3}$ |
6.某校为了解学生对正在进行的一项教学改革的态度,从500名高一学生和400名高二学生中按分层抽样的方式抽取了45名学生进行问卷调查,结果可以分成以下三类:支持、反对、无所谓,调查结果统计如下:
(1)(i)求出表中的x,y的值;
(ii)从反对的同学中随机选取2人进一步了解情况,求恰好高一、高二各1人的概率;
(2)根据表格统计的数据,完成下面的2×2的列联表,并判断是否有90%的把握认为持支持与就读年级有关.(不支持包括无所谓和反对)
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 支持 | 无所谓 | 反对 | |
| 高一年级 | 18 | x | 2 |
| 高二年级 | 10 | 6 | y |
(ii)从反对的同学中随机选取2人进一步了解情况,求恰好高一、高二各1人的概率;
(2)根据表格统计的数据,完成下面的2×2的列联表,并判断是否有90%的把握认为持支持与就读年级有关.(不支持包括无所谓和反对)
| 高一年级 | 高二年级 | 总计 | |
| 支持 | |||
| 不支持 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |
16.若tanα=$\frac{1}{3}$,则sin4α-cos4α+6sin$\frac{α}{2}$cos$\frac{α}{2}$cosα=( )
| A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{10}$ |