题目内容
已知
+
+
=
,且|
|=3,|
|=4,|
|=5,则
•
+
•
+
•
= ,
•
= .
| a |
| b |
| c |
| 0 |
| a |
| b |
| c |
| a |
| b |
| b |
| c |
| c |
| a |
| a |
| b |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:首先,根据
+
+
=
得到
=-(
+
),然后,根据|
|=5,求解
•
=0,然后,再求解
•
+
•
+
•
的值.
| a |
| b |
| c |
| 0 |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
| b |
| c |
| c |
| a |
解答:
解:∵
+
+
=
,
∴
=-(
+
),
∵|
|=5,
∴(
+
)2=25,
∴|
|2+2
•
+|
|2=25,
∵|
|=3,|
|=4,
∴9+2
•
+16=25,
•
=0,
∴
•
+
•
+
•
=
•
+
•(
+
)
=
•
-(
+
)2
=0-25=-25.
故答案为:-25;0.
| a |
| b |
| c |
| 0 |
∴
| c |
| a |
| b |
∵|
| c |
∴(
| a |
| b |
∴|
| a |
| a |
| b |
| b |
∵|
| a |
| b |
∴9+2
| a |
| b |
| a |
| b |
∴
| a |
| b |
| b |
| c |
| c |
| a |
| a |
| b |
| c |
| a |
| b |
=
| a |
| b |
| a |
| b |
=0-25=-25.
故答案为:-25;0.
点评:本题重点考查了平面向量的基本运算,数量积的运算性质等知识,属于中档题.
练习册系列答案
相关题目
复数z=i(1+i)的虚部是( )
| A、0 | B、1 | C、i | D、-1 |
若复数2-bi(b∈R)的实部与虚部互为相反数,则b的值为( )
| A、2 | ||
| B、-2 | ||
C、
| ||
D、-
|