题目内容

已知曲线
x=4cosθ
y=2
3
sinθ
上一点P到点A(-2,0),B(2,0)的距离之差为2.则△PAB为(  )
分析:利用三角函数中的平方关系消去参数θ可知,曲线是椭圆,A、B恰为焦点,再利用椭圆的定义可求出|PA|+|PB|,再根据P到点A(-2,0)、B(2,0)的距离之差为2,可求出|PA|、|PB|的长,从而判定△PAB的形状.
解答:解:曲线
x=4cosθ
y=2
3
sinθ

表示的椭圆标准方程为
x2
16
+
y2
12
=1

可知点A(-2,0)、B(2,0)椭圆的焦点,
根据椭圆的定义,|PA|+|PB|=2a=8.
∵|PA|-|PB|=2,
∴|PA|=5,|PB|=3
∴|AB|=4
∴△PAB是直角三角形
故选B.
点评:本小题主要考查参数方程、双曲线的简单性质、椭圆的定义等基础知识,考查数形结合思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网