题目内容
11.分析 由已知得到a=3c,设出P(x0,y0)(-3c≤x0≤3c),把$\overrightarrow{PF}$•$\overrightarrow{PA}$化为含有x0的函数式,然后利用配方法求得最值,结合$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值是12求得c,则椭圆方程可求.
解答 解:∵e=$\frac{c}{a}$=$\frac{1}{3}$,∴a=3c,
设P(x0,y0)(-3c≤x0≤3c),则
$\overrightarrow{PF}=(-c-{x}_{0},-{y}_{0}),\overrightarrow{PA}=(a-{x}_{0},-{y}_{0})$,
∴$\overrightarrow{PF}$•$\overrightarrow{PA}$=(-c-x0,-y0)•(a-x0,-y0)
=$-ac+c{x}_{0}-a{x}_{0}+{{x}_{0}}^{2}+{{y}_{0}}^{2}$=$-ac+c{x}_{0}-a{x}_{0}+{{x}_{0}}^{2}+{b}^{2}-\frac{{b}^{2}}{{a}^{2}}{{x}_{0}}^{2}$
=$\frac{{c}^{2}}{{a}^{2}}{{x}_{0}}^{2}-(a-c){x}_{0}+{b}^{2}-ac$=$\frac{1}{9}{{x}_{0}}^{2}-(a-c){x}_{0}+{a}^{2}-{c}^{2}-ac$.
=$\frac{1}{9}{{x}_{0}}^{2}-2c{x}_{0}+5{c}^{2}$=$\frac{1}{9}[{{x}_{0}}^{2}-18c{x}_{0}+81{c}^{2}]-4{c}^{2}$=$\frac{1}{9}({x}_{0}-9c)^{2}-4{c}^{2}$.
∴当x0=-3c时,$\overrightarrow{PF}$•$\overrightarrow{PA}$有最大值为12c2=12.
∴c2=1,则a2=9,b2=a2-c2=8.
∴所求椭圆方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$.
故答案为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$.
点评 本题考查椭圆的简单性质,考查了利用向量法求最值问题,考查计算能力,是中档题.
| A. | 12 | B. | 25 | C. | 8 | D. | 5 |
| A. | 3690 | B. | 3660 | C. | 3240 | D. | 1830 |