ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãA£¬B·Ö±ðΪÍÖÔ²µÄÓÒ¶¥µãºÍÉ϶¥µã£¬ÇÒ|AB|=$\sqrt{7}$£®£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÍÖÔ²CµÄÓÒ½¹µãΪF£¬¹ýFµãµÄÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßl1¡¢l2£¬Ö±Ïßl1ÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬Ö±Ïßl2ÓëÖ±Ïßx=4½»ÓÚTµã£¬ÇóÖ¤£ºÏß¶ÎPQµÄÖеãÔÚÖ±ÏßOTÉÏ£®
·ÖÎö £¨1£©¸ù¾ÝÌõ¼þÔËÓÃÀëÐÄÂʹ«Ê½ºÍÁ½µã¾àÀ빫ʽ£¬Çó³öa£¬b£¬¼´¿ÉÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÉèPQµÄ·½³ÌΪ£ºx=my+1´úÈëÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýÖ®¼äµÄ¹ØÏµ£¬ÇóµÃPQµÄÖеãGµÄ×ø±ê£¬Çó³öOGºÍOTµÄбÂÊ£¬¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{1}{2}$£¬
ÓÖa2-b2=c2£¬
$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{7}$£¬
½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©Ö¤Ã÷£ºÉèÖ±ÏßPQµÄ·½³ÌΪ£ºx=my+1£¬
´úÈëÍÖÔ²·½³Ì3x2+4y2=12£¬
µÃ£¨3m2+4£©y2+6my-9=0£¬
ÔòÅбðʽ¡÷=36m2+4¡Á9£¨3m2+4£©£¾0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬PQµÄÖеãG£¨x0£¬y0£©£¬
Ôòy1+y2=-$\frac{6m}{3{m}^{2}+4}$£¬y1y2=-$\frac{9}{3{m}^{2}+4}$£¬
Ôòy0=$\frac{1}{2}$£¨y1+y2£©=-$\frac{3m}{3{m}^{2}+4}$£¬x0=my0+1=$\frac{4}{3{m}^{2}+4}$£¬
¼´G£¨$\frac{4}{3{m}^{2}+4}$£¬-$\frac{3m}{3{m}^{2}+4}$£©£¬
kOG=-$\frac{3m}{3{m}^{2}+4}$•$\frac{3{m}^{2}+4}{4}$=-$\frac{3m}{4}$£¬
ÉèÖ±ÏßFTµÄ·½³ÌΪ£ºy=-m£¨x-1£©£¬µÃTµã×ø±êΪ£¨4£¬-3m£©£¬
ÓÉkOT=-$\frac{3m}{4}$£¬
¿ÉµÃkOG=kOT£¬
¼´Ïß¶ÎPQµÄÖеãÔÚÖ±ÏßOTÉÏ£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²·½³ÌµÄÇó½âÒÔ¼°Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµÊÇÓ¦Óã¬ÀûÓÃÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢×ª»¯ÎªÒ»Ôª¶þ´Î·½³ÌÎÊÌâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÔËËãÁ¿½Ï´ó£¬ÊôÓÚÖеµÌ⣮
| A£® | x-y-5=0 | B£® | x+y-5=0 | C£® | x-y+5=0 | D£® | x+y+5=0 |
| A£® | a£¾b£¾c | B£® | b£¾c£¾a | C£® | b£¾a£¾c | D£® | a£¾c£¾b |