题目内容
20.| A. | 24 | B. | 20+4$\sqrt{2}$ | C. | 24+4$\sqrt{2}$ | D. | 20+4$\sqrt{3}$ |
分析 由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,根据所提供的数据可求出各个面的面积,可得答案.
解答 解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,
该四棱锥的底为正方体的上底,高为1,
如图所示:![]()
∴四棱锥的侧高为:$\sqrt{2}$
故该几何体的表面积为:5×22+4×($\frac{1}{2}$×2×$\sqrt{2}$)=20+4$\sqrt{2}$,
故选:B
点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
练习册系列答案
相关题目
8.在平面直角坐际系xOy中,P是椭圆$\frac{{y}^{2}}{4}$$+\frac{{x}^{2}}{3}$=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
5.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,A,B是椭圆上的两点,且满足$\overrightarrow{OA}$$+\overrightarrow{OB}$=$\overrightarrow{0}$(O为坐标原点),$\overrightarrow{A{F}_{2}}$$•\overrightarrow{{F}_{1}{F}_{2}}$=0,若直线AB的斜率为$\frac{\sqrt{2}}{2}$,则椭圆的离心率是( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ |
12.下列关于语句的说法正确的是( )
| A. | 在程序中,程序执行的顺序是按照程序中语句行排列的顺序执行的 | |
| B. | 条件语句就是满足条件就执行,不满足条件就不执行 | |
| C. | 循环语句是流程图中循环结构的实现 | |
| D. | 循环结构不可以嵌套 |