题目内容

1.已知sin($\frac{π}{4}$-α)=$\frac{1}{3}$,0<α<$\frac{π}{4}$,则$\frac{cos(2π-2α)}{cos(\frac{5π}{4}+α)}$=-$\frac{2\sqrt{2}}{3}$.

分析 由条件利用同角三角的基本关系求出cos($\frac{π}{4}$-α) 的值,利用三角恒等变换把要求的式子化简为-cos($\frac{π}{4}$-α),可得结论.

解答 解:∵sin($\frac{π}{4}$-α)=$\frac{1}{3}$,0<α<$\frac{π}{4}$,∴cos($\frac{π}{4}$-α)=$\sqrt{{1-sin}^{2}(\frac{π}{4}-α)}$=$\frac{2\sqrt{2}}{3}$.
则$\frac{cos(2π-2α)}{cos(\frac{5π}{4}+α)}$=$\frac{cos2α}{-cos(\frac{π}{4}+α)}$=$\frac{sin(\frac{π}{2}+2α)}{-cos(\frac{π}{4}+α)}$=$\frac{2sin(\frac{π}{4}+α)cos(\frac{π}{4}+α)}{-cos(\frac{π}{4}+α)}$=-2sin($\frac{π}{4}$+α)
=-cos[$\frac{π}{2}$-($\frac{π}{4}$+α)]=-cos($\frac{π}{4}$-α)=-$\frac{2\sqrt{2}}{3}$,
故答案为:-$\frac{2\sqrt{2}}{3}$.

点评 本题主要考查同角三角的基本关系,三角恒等变换,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网