题目内容

△ABC中,sinB既是sinA,sinC的等差中项,又是sinA,sinC的等比中项,则∠B=
 
考点:等比数列的性质,等差数列的性质
专题:等差数列与等比数列
分析:由题设知
sinA+sinC=2sinB
sinA•sinC=sin2B
,由此推导出sinB=sinA=sinC,从而能求出∠B=
π
3
解答: 解:∵△ABC中,sinB既是sinA,sinC的等差中项,
又是sinA,sinC的等比中项,
sinA+sinC=2sinB
sinA•sinC=sin2B

∴4sin2B=(sinA+sinC)2
即:4sinA•sinC=(sinA+sinC)2
(sinA+sinC)2-4sinA•sinC=0
(sinA-sinC)2=0
∴sinA=sinC
∴2sinB=2sinA=2sinC
∴sinB=sinA=sinC
∴a=b=c
∴∠B=
π
3

故答案为:
π
3
点评:本题考查角的求法,是中档题,解题时要熟练掌握等差数列、等比数列的性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网