题目内容
某校开设九门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,若学校规定每位学生选修四门,则不同的选修方案共有( )
A.15种 B.60种 C.75种 D.100种
(本题满分14分)已知全集,集合.
(1)分别求、;
(2)求和.
命题“,”的否定是( )
(A),
(B),
(C),
(D),
已知命题:函数在为增函数,:函数在为减函数,则在命题 和中,真命题是( )
A. B. C. D.
【附加题】(5分,计入总分,但总分不超过100分):A班同学做,B班做了也没分?
设三角形的三边长分别是整数,,,且,已知,其中,而表示不超过的最大整数,求这种三角形周长的最小值.
若方程在区间且上有一根,则的值为
A.1 B.2 C.3 D.4
直线过定点,且与直线,分别交于A,B两点,若线段AB的中点为P,求直线的方程.
设,,若,则= .
【答案】
【解析】
试题分析:因为,所以,解得,所以=.
考点:1、平面向量垂直的充要条件;2、平面向量的模.
【题型】填空题【适用】一般【标题】【百强校】2016届江西省临川一中高三上学期期中文科数学试卷(带解析)【关键字标签】【结束】
已知为锐角,,则________.
设函数f(x)=x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值范围是( )
A.1<a≤2 B.a≥4 C.a≤2 D.0<a≤3