ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÖ±Ïßl£º$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}$£¨ÆäÖÐtΪ²ÎÊý£¬¦ÁΪÇãб½Ç£©£®ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{cos¦È}{{{{sin}^2}¦È}}$£®£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢ÇóCµÄ½¹µãFµÄÖ±½Ç×ø±ê£»
£¨2£©ÒÑÖªµãP£¨1£¬0£©£¬ÈôÖ±ÏßlÓëCÏཻÓÚA£¬BÁ½µã£¬ÇÒ$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=2£¬Çó¡÷FABµÄÃæ»ý£®
·ÖÎö £¨1£©Ô·½³Ì±äÐÎΪ¦Ñ2sin2¦È=¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑlµÄ·½³Ì´úÈëy2=xµÃt2sin2¦Á-tcos¦Á-1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÒÑÖª¿ÉµÃ£º|t1-t2|=2|t1t2|£¬Æ½·½µÃ${£¨{{t_1}+{t_2}}£©^2}-4{t_1}{t_2}=4t_1^2t_2^2$£¬¿ÉµÃsin2¦Á=1£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©Ô·½³Ì±äÐÎΪ¦Ñ2sin2¦È=¦Ñcos¦È£¬
¡ßx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àCµÄÖ±½Ç×ø±ê·½³ÌΪy2=x£¬Æä½¹µãΪ$F£¨{\frac{1}{4}£¬0}£©$£®
£¨2£©°ÑlµÄ·½³Ì´úÈëy2=xµÃt2sin2¦Á-tcos¦Á-1=0£¬
Ôò${t_1}+{t_2}=\frac{cos¦Á}{{{{sin}^2}¦Á}}£¬{t_1}{t_2}=-\frac{1}{{{{sin}^2}¦Á}}$£¬¢Ù
$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=2?|{PA}|+|{PB}|=2|{PA}|•|{PB}|$£¬
¼´|t1-t2|=2|t1t2|£¬
ƽ·½µÃ${£¨{{t_1}+{t_2}}£©^2}-4{t_1}{t_2}=4t_1^2t_2^2$£¬¢Ú
°Ñ¢Ù´úÈë¢ÚµÃ$\frac{{{{cos}^2}¦Á}}{{{{sin}^4}¦Á}}+\frac{4}{{{{sin}^2}¦Á}}=\frac{4}{{{{sin}^4}¦Á}}$£¬¡àsin2¦Á=1£¬
¡ß¦ÁÊÇÖ±ÏßlµÄÇãб½Ç£¬¡à$¦Á=\frac{¦Ð}{2}$£¬
¡àlµÄÆÕͨ·½³ÌΪx=1£¬ÇÒ|AB|=2£¬
µãFµ½ABµÄ¾àÀëd=1-$\frac{1}{4}$=$\frac{3}{4}$
¡à¡÷FABµÄÃæ»ýΪS=$\frac{1}{2}$|AB|¡Ád=$\frac{1}{2}¡Á2¡Á\frac{3}{4}$=$\frac{3}{4}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¼«×ø±êϵÓë²ÎÊý·½³ÌµÄÏà¹ØÖªÊ¶¡¢¼«×ø±ê·½³ÌÓëÆ½ÃæÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{1}{a}£¼\frac{1}{b}$ | B£® | a2£¼ab | C£® | a2£¼b2 | D£® | $\frac{1}{a-b}£¼\frac{1}{a}$ |
£¨¡¡¡¡£©
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | 1006 | B£® | 1007 | C£® | 1008 | D£® | 1009 |
| A£® | a1•d£¼0 | B£® | |Sn|ÓÐ×îСֵ | ||
| C£® | ${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$£¾0 | D£® | ${a}_{{n}_{0}+1}•{a}_{{n}_{0}+2}$£¾0 |