ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÖ±Ïßl£º$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}$£¨ÆäÖÐtΪ²ÎÊý£¬¦ÁΪÇãб½Ç£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{cos¦È}{{{{sin}^2}¦È}}$£®
£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢ÇóCµÄ½¹µãFµÄÖ±½Ç×ø±ê£»
£¨2£©ÒÑÖªµãP£¨1£¬0£©£¬ÈôÖ±ÏßlÓëCÏཻÓÚA£¬BÁ½µã£¬ÇÒ$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=2£¬Çó¡÷FABµÄÃæ»ý£®

·ÖÎö £¨1£©Ô­·½³Ì±äÐÎΪ¦Ñ2sin2¦È=¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑlµÄ·½³Ì´úÈëy2=xµÃt2sin2¦Á-tcos¦Á-1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÒÑÖª¿ÉµÃ£º|t1-t2|=2|t1t2|£¬Æ½·½µÃ${£¨{{t_1}+{t_2}}£©^2}-4{t_1}{t_2}=4t_1^2t_2^2$£¬¿ÉµÃsin2¦Á=1£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ô­·½³Ì±äÐÎΪ¦Ñ2sin2¦È=¦Ñcos¦È£¬
¡ßx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àCµÄÖ±½Ç×ø±ê·½³ÌΪy2=x£¬Æä½¹µãΪ$F£¨{\frac{1}{4}£¬0}£©$£®
£¨2£©°ÑlµÄ·½³Ì´úÈëy2=xµÃt2sin2¦Á-tcos¦Á-1=0£¬
Ôò${t_1}+{t_2}=\frac{cos¦Á}{{{{sin}^2}¦Á}}£¬{t_1}{t_2}=-\frac{1}{{{{sin}^2}¦Á}}$£¬¢Ù
$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=2?|{PA}|+|{PB}|=2|{PA}|•|{PB}|$£¬
¼´|t1-t2|=2|t1t2|£¬
ƽ·½µÃ${£¨{{t_1}+{t_2}}£©^2}-4{t_1}{t_2}=4t_1^2t_2^2$£¬¢Ú
°Ñ¢Ù´úÈë¢ÚµÃ$\frac{{{{cos}^2}¦Á}}{{{{sin}^4}¦Á}}+\frac{4}{{{{sin}^2}¦Á}}=\frac{4}{{{{sin}^4}¦Á}}$£¬¡àsin2¦Á=1£¬
¡ß¦ÁÊÇÖ±ÏßlµÄÇãб½Ç£¬¡à$¦Á=\frac{¦Ð}{2}$£¬
¡àlµÄÆÕͨ·½³ÌΪx=1£¬ÇÒ|AB|=2£¬
µãFµ½ABµÄ¾àÀëd=1-$\frac{1}{4}$=$\frac{3}{4}$
¡à¡÷FABµÄÃæ»ýΪS=$\frac{1}{2}$|AB|¡Ád=$\frac{1}{2}¡Á2¡Á\frac{3}{4}$=$\frac{3}{4}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¼«×ø±êϵÓë²ÎÊý·½³ÌµÄÏà¹ØÖªÊ¶¡¢¼«×ø±ê·½³ÌÓëÆ½ÃæÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø