题目内容
已知y=f(x)为R上的可导函数,当x≠0时,A.1
B.2
C.0
D.0或 2
【答案】分析:由题意可得,x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的.当x>0时,利用导数的
知识可得xg(x)在(0,+∞)上是递增函数,xg(x)>1恒成立,可得xg(x)在(0,+∞)上无零点.
同理可得xg(x)在(-∞,0)上也无零点,从而得出结论.
解答:解:由于函数
,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,
故我们考虑 xg(x)=xf(x)+1 的零点.
由于当x≠0时,
,
①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
)>0,
所以,在(0,+∞)上,函数x•g(x)单调递增函数.
又∵
[xf(x)+1]=1,∴在(0,+∞)上,函数 x•g(x)=xf(x)+1>1恒成立,
因此,在(0,+∞)上,函数 x•g(x)=xf(x)+1 没有零点.
②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
)<0,
故函数 x•g(x)在(-∞,0)上是递减函数,函数 x•g(x)=xf(x)+1>1恒成立,
故函数 x•g(x)在(-∞,0)上无零点.
综上可得,函
在R上的零点个数为0,
故选C.
点评:本题考查了根的存在性及根的个数判断,导数与函数的单调性的关系,体现了分类讨论、转化的思想,
属于中档题.
知识可得xg(x)在(0,+∞)上是递增函数,xg(x)>1恒成立,可得xg(x)在(0,+∞)上无零点.
同理可得xg(x)在(-∞,0)上也无零点,从而得出结论.
解答:解:由于函数
故我们考虑 xg(x)=xf(x)+1 的零点.
由于当x≠0时,
①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
所以,在(0,+∞)上,函数x•g(x)单调递增函数.
又∵
因此,在(0,+∞)上,函数 x•g(x)=xf(x)+1 没有零点.
②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
故函数 x•g(x)在(-∞,0)上是递减函数,函数 x•g(x)=xf(x)+1>1恒成立,
故函数 x•g(x)在(-∞,0)上无零点.
综上可得,函
故选C.
点评:本题考查了根的存在性及根的个数判断,导数与函数的单调性的关系,体现了分类讨论、转化的思想,
属于中档题.
练习册系列答案
相关题目