题目内容

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D
(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=
3
,延长CE交AB于点F,求△BCF外接圆的半径.
考点:圆的切线的性质定理的证明
专题:立体几何
分析:(I)如图所示,连接DE.由于DB垂直BE交圆于点D,可得∠DBE=90°.即DE为圆的直径.由于∠ABC的角平分线BE交圆于点E,利用同圆中的弧圆周角弦之间的关系可得∠DCB=∠DBC,DB=DC.
(II)由(I)利用垂径定理及其推论可得:DE⊥BC,且平分BC,设中点为M,外接圆的圆心为点O.连接OB,OC,可得OB⊥AB.在Rt△BOM中,可得∠OBM=30°,∠BOE=60°.进而得到∠CBA=60°.∠BCE=30°,∠BFC=90°.即可得到△BCF外接圆的半径=
1
2
BC
解答: (I)证明:如图所示,连接DE.
∵DB垂直BE交圆于点D,∴∠DBE=90°.
∴DE为圆的直径.
∵∠ABC的角平分线BE交圆于点E,
BE
=
CE

DB
=
DC

∴∠DCB=∠DBC,
∴DB=DC.
(II)解:由(I)可知:DE⊥BC,且平分BC,设中点为M,外接圆的圆心为点O.
连接OB,OC,则OB⊥AB.
在Rt△BOM中,OB=1,BM=
1
2
BC=
3
2

∴∠OBM=30°,∠BOE=60°.
∴∠CBA=60°.
∠BCE=
1
2
∠BOE=30°

∴∠BFC=90°.
∴△BCF外接圆的半径=
1
2
BC
=
3
2
点评:本题综合考查了圆的切线的性质、同圆中的弧圆周角弦之间的关系、垂径定理及其推论、直角三角形外接圆的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网