题目内容

20.设函数f1(x)=x2,f2(x)=$\frac{3}{x+1}$,f3(x)=sinπx,xi=$\frac{i}{9}$(i=0,1,2,…,9),记Ik=$\sum_{i=1}^{9}$|fk(xi)-fk(xi-1)|,则(  )
A.I1<I2<I3B.I2<I1<I3C.I3<I2<I1D.I1<I3<I2

分析 根据记Ik=|fk(x1)-fk(x0)|+|fk(x2)-fk(x1)丨+…+|fk(x9)-fk(x8)|,分别求出I1,I2,I3与1的关系,继而得到答案.

解答 解:f1(x)=x2,在(0,1)是单调增函数,|f1(xi)-f1(xi-1)|=f1(xi)-f1(xi-1),
I1=|f1(x1)-f1(x0)|+|f1(x2)-f1(x1)丨+…+|f1(x9)-fk(x8)|,
=f1(x1)-f1(x0)+f1(x2)-f1(x1)+…+f1(x9)-f1(x8),
=f1(x9)-f1(x0),
=f1(1)-f1(0),
=1;
f2(x)=$\frac{3}{x+1}$,在(0,1)是单调减函数,|f1(xi)-f1(xi-1)|=f1(xi-1)-f1(xi),
I2=|f2(x1)-f2(x0)|+|f2(x2)-f2(x1)丨+…+|f2(x9)-f2(x8)|,
=f1(x0)-f1(x9),
=$\frac{3}{2}$;
f3(x)=sinπx,在(0,$\frac{1}{2}$)单调递增,在($\frac{1}{2}$,1)单调递增,且图象关于x=$\frac{1}{2}$对称,
I3=|f3(x1)-f3(x0)|+|f3(x2)-f3(x1)丨+…+|f3(x9)-f3(x8)|,
=f3(x1)-f3(x0)+f3(x2)-f3(x1)+…+f3(x5)-f3(x4)+f3(x5)-f3(x6)+…+f3(x7)-f3(x9)+f3(x8)-f3(x9),
=f3(x5)-f3(x0)+f3(x5)-f3(x9),
=2.
故答案为:A.

点评 本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网