题目内容
20.设函数f1(x)=x2,f2(x)=$\frac{3}{x+1}$,f3(x)=sinπx,xi=$\frac{i}{9}$(i=0,1,2,…,9),记Ik=$\sum_{i=1}^{9}$|fk(xi)-fk(xi-1)|,则( )| A. | I1<I2<I3 | B. | I2<I1<I3 | C. | I3<I2<I1 | D. | I1<I3<I2 |
分析 根据记Ik=|fk(x1)-fk(x0)|+|fk(x2)-fk(x1)丨+…+|fk(x9)-fk(x8)|,分别求出I1,I2,I3与1的关系,继而得到答案.
解答 解:f1(x)=x2,在(0,1)是单调增函数,|f1(xi)-f1(xi-1)|=f1(xi)-f1(xi-1),
I1=|f1(x1)-f1(x0)|+|f1(x2)-f1(x1)丨+…+|f1(x9)-fk(x8)|,
=f1(x1)-f1(x0)+f1(x2)-f1(x1)+…+f1(x9)-f1(x8),
=f1(x9)-f1(x0),
=f1(1)-f1(0),
=1;
f2(x)=$\frac{3}{x+1}$,在(0,1)是单调减函数,|f1(xi)-f1(xi-1)|=f1(xi-1)-f1(xi),
I2=|f2(x1)-f2(x0)|+|f2(x2)-f2(x1)丨+…+|f2(x9)-f2(x8)|,
=f1(x0)-f1(x9),
=$\frac{3}{2}$;
f3(x)=sinπx,在(0,$\frac{1}{2}$)单调递增,在($\frac{1}{2}$,1)单调递增,且图象关于x=$\frac{1}{2}$对称,
I3=|f3(x1)-f3(x0)|+|f3(x2)-f3(x1)丨+…+|f3(x9)-f3(x8)|,
=f3(x1)-f3(x0)+f3(x2)-f3(x1)+…+f3(x5)-f3(x4)+f3(x5)-f3(x6)+…+f3(x7)-f3(x9)+f3(x8)-f3(x9),
=f3(x5)-f3(x0)+f3(x5)-f3(x9),
=2.
故答案为:A.
点评 本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.
练习册系列答案
相关题目
12.函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}+x,x≤0}\\{-1+lnx,x>0}\end{array}\right.$ 的零点个数为( )
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
20.离心率为2的双曲线E的一个焦点到一条渐近线的距离为1,则E的标准方程可以是( )
| A. | 3x2-y2=1 | B. | $\frac{x^2}{3}-{y^2}$=1 | C. | x2-3y2=1 | D. | ${x^2}-\frac{y^2}{3}=1$ |